A Confocal Endoscope for Cellular Imaging
نویسندگان
چکیده
منابع مشابه
Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging.
We present a single fiber reflectance confocal microscope with a two dimensional MEMS gimbaled scanner. Achieved lateral and axial resolutions are 0.82 mum and 13 mum, respectively. The field of view is 140 x 100 mum at 8 frames/second. Images and videos of cell phantoms and tissue are presented with sub-cellular resolution.
متن کاملOptical Design with Narrow-Band Imaging for a Capsule Endoscope
The study proposes narrow-band imaging (NBI) lens design of 415 nm and 540 nm of a capsule endoscope (CE). The researches show that in terms of the rate of accuracy in detecting and screening neoplastic and nonneoplastic intestinal lesions, the NBI system outperformed that of traditional endoscopes and rivaled that of chromoendoscopes. In the proposed NBI CE optical system, the simulation resul...
متن کاملDevelopment of a versatile two-photon endoscope for biological imaging
We describe a versatile, catheter-type two-photon probe, designed for in vivo and ex vivo imaging of the aqueous outflow pathway in the eye. The device consists of a silica double cladding fiber used for laser delivery and fluorescence collection, a spiral fiber scanner driven by a miniature piezoelectric tube, and an assembly of three micro-size doublet achromatic lenses used for focusing the ...
متن کاملOptical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection.
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency i...
متن کاملHigh-speed addressable confocal microscopy for functional imaging of cellular activity.
Due to cellular complexity, studying fast signaling in neurons is often limited by: 1. the number of sites that can be simultaneously probed with conventional tools, such as patch pipettes, and 2. the recording speed of imaging tools, such as confocal or multiphoton microscopy. To overcome these spatiotemporal limitations, we develop an addressable confocal microscope that permits concurrent op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering
سال: 2015
ISSN: 2095-8099
DOI: 10.15302/j-eng-2015081